
Computing Reeb Graphs as a Union of Contour Trees
Harish Doraiswamy∗

Department of Computer Science and Automation
Indian Institute of Science

Vijay Natarajan†

Department of Computer Science and Automation
Supercomputer Education and Research Centre

Indian Institute of Science

ABSTRACT

The Reeb graph of a scalar function tracks the evolution of the
topology of its level sets. This work describes a fast and efficient
algorithm to compute the Reeb graph of a scalar function defined
over manifolds and non-manifolds. The key idea in the proposed
approach is to maximize the use of the efficient contour tree algo-
rithm to compute the Reeb graph. The algorithm proceeds by divid-
ing the input into a set of simply connected interval volumes using
the join tree of the scalar function and computes the Reeb graph
by combining the contour trees of all the interval volumes. Since
the key ingredient of this method is a series of union-find opera-
tions, the algorithm is fast in practice. The algorithm also extends
to handle large data that do not fit in memory.

Index Terms: I.3.5 [Computing Methodologies]: Computa-
tional Geometry and Object Modeling—Geometric algorithms, lan-
guages, and systems

1 INTRODUCTION

The Reeb graph of a scalar function is obtained by mapping each
connected component of its level sets to a point. Level set com-
ponents that contain critical points of the function map to nodes of
the graph. The abstract representation of the level set topology in
the Reeb graph facilitates the development of methods for model-
ing objects and visualizing scientific data. Reeb graphs and their
loop-free version, called contour trees, have a variety of applica-
tions including topology-based shape matching [4] and designing
transfer functions for volume rendering [9].

Rapidly increasing data sizes and the interactivity requirement
in the above-mentioned applications necessitate the development
of algorithms for fast computation of Reeb graphs that are capable
of handling relatively large input sizes. Further, in several cases the
domain is not simply connected, non-manifold, and may be high-
dimensional. While an efficient and fast algorithm is available for
computing contour trees in all dimensions, such an algorithm for
computing Reeb graphs is still elusive. In this work we attempt
to solve this problem by aggressively employing the contour tree
algorithm to construct the Reeb graph. This approach results in an
algorithm that is efficient both theoretically, in terms of the worst
case running time, and practically, in terms of performance on real-
world data. The goal of our algorithm is similar to that followed
by Tierny et al. [8] – to remove loops from the input in order to
use the contour tree algorithm. While their algorithm is restricted
to 3-manifold input embedded in R3, our method is generic. The
proposed algorithm is also amenable to handle large data that do
not fit in memory.

2 BACKGROUND

Let M denote a d-manifold with or without boundary. Given a
smooth, real-valued function f : M → R defined on M, the crit-

∗e-mail:harishd@csa.iisc.ernet.in
†e-mail:vijayn@csa.iisc.ernet.in

ical points of f are exactly where the gradient becomes zero. The
function f is called a Morse function if it satisfies the following
conditions [2]:

1. All critical points of f are non-degenerate and lie in the inte-
rior of M.

2. All critical points of the restriction of f to the boundary of M
are non-degenerate.

3. All critical values are distinct i.e., f (p) 6= f (q) for all critical
points p 6= q.

The above conditions typically do not hold in practice for
piecewise-linear (PL) functions. However, simulated perturbation
of the function [3, Section 1.4] ensures that no two critical values
are equal. A total order on the vertices helps in consistently iden-
tifying the vertex with the higher function value between a pair of
vertices. In the remaining discussion, we assume that the above
conditions are satisfied.

Level set topology. The preimage of a real value is called a level
set. The level set of a regular value is a (d − 1)-manifold with
or without boundary, possibly containing multiple connected com-
ponents. We are interested in the evolution of level sets against
increasing function value. Topological changes occur at critical
points, whereas topology of the level set is preserved across reg-
ular points [5].

The link of a vertex consists of all vertices adjacent to it and the
induced edges, triangles, and higher-order simplices. Adjacent ver-
tices with lower function value and their induced simplices consti-
tute the lower link, whereas the adjacent vertices with higher func-
tion value and their induced simplices constitute the upper link. In
the context of Reeb graphs, we are only interested in critical points
that modify the number of level set components. So, it is sufficient
to count the number of connected components of the lower and up-
per links for identifying these critical points. The vertex is regular
if it has exactly one lower link component and one upper link com-
ponent. All other vertices are critical. A critical point is a maximum
if the upper link is empty, a minimum if the lower link is empty, or
a saddle otherwise.

Reeb graphs and contour trees. The Reeb graph of f is ob-
tained by contracting each connected component of a level set to
a point [7]. Formally, it is the quotient space under an equivalence
relation that identifies all points within a connected component of a
level set. When the Reeb graph has no loops, it is called the contour
tree.

3 THE RECON ALGORITHM

We now describe our Reeb graph computation algorithm (ReCon).
The algorithm works without any modifications for d-manifolds,
d≥ 2, and non-manifolds. The input to our algorithm is represented
by a triangulated mesh together with a scalar function defined on the
vertices of the mesh, and linearly interpolated within each simplex.
The algorithm computes the Reeb graph in three stages:

1. Identify the loops present in the Reeb graph of the input and
split the input at these loops to obtain a set of interval volumes.

Figure 1: Computing the Reeb graph for the height function defined on a solid vase. (a) The join tree for the input is computed and the loop
saddles c6 and c7 are identified. (b) The input is split at a function value infinitesimally above that of the loop saddles to obtain a set of interval
volumes. (c) The contour tree for each interval volume is computed after introducing maximum-minimum pairs (yellow nodes) at each split.
(d) The contour trees are merged at the newly created maximum-minimum pairs to obtain the Reeb graph of the input.

2. Compute the contour tree for each interval volume, which is
now simply connected.

3. Construct the Reeb graph by combining the contour trees
computed in the previous step.

Finding Loop saddles. Consider any loop L in the Reeb graph of
the given input. If we sweep the input with decreasing function
value, then a split saddle cs begins the loop L, while a join saddle
c j ends it. We are interested in finding all such loop saddles – a set
of saddles that begin or end a loop in the Reeb graph. The function
values at these saddles are in turn used to obtain a set of loop free
interval volumes. This is accomplished by splitting the input at
these saddles. The following lemma provides us with the necessary
condition to compute this set.

Lemma 1. Let GR be the Reeb graph of a scalar function f . Con-
sider the join tree TJ of f . Any join saddle that ends a loop in GR
appears as a degree-2 node in TJ .

Computing the Reeb graph. The algorithm first identifies all po-
tential loops of the Reeb graph. Each loop is represented by a loop
saddle (join saddle) that closes the loop. In order to locate the loop
saddles, the algorithm first computes all critical points of the input
scalar function f . This is accomplished by counting the number
of components in the upper and lower links of every vertex. Since
we are primarily interested in join saddles, we consider only those
saddles whose upper link have two components. Let this set be
denoted by S. The algorithm then computes the join tree TJ of
f . Using Lemma 1, the algorithm creates the set of loop saddles
SL = {ci ∈ S|deg(ci) in TJ = 2}.

Next, the algorithm implicitly splits the domain at these loops
into a set of interval volumes. These interval volumes have the
property that their Reeb graphs do not contain loops, and hence can
be computed using the contour tree algorithm. For each saddle c j in
SL, we perform a split in the input at a function value f (c j)+ε , for
an appropriate small value of ε . Each connected component that
is split generates a new maximum-minimum pair. The next step
computes the contour tree of the individual interval volumes.

In the final step of the algorithm, we merge the maximum-
minimum pairs created in the previous step to obtain the Reeb graph
of the original input. Figure 1 illustrates the algorithm for the height
function defined on a solid vase model. Our algorithm has a running
time of O(n logn + hn) time, where n is the number of triangles in
the input and h is the number of degree-2 join saddles in the join
tree.

A direct extension of our algorithm computes Reeb graphs for
large data that do not fit in memory. The main idea is to split
the input into interval volumes that fit into memory, and compute
the Reeb graph of the input scalar function by combining the Reeb
graphs of the individual interval volumes.

Table 1: Reeb graph computation time for various 2D and 3D input.
The Reeb graph was computed for the height function defined by the
y-axis for 2D models, while the scalar function was provided with the
3D data. NA denotes that the referenced algorithm is not applicable
for the corresponding data set.

Time taken (sec)
Model Triangles RECON ONLINE [6] LS [8]

Dawn (2D) 6.6M 6.35 11.5 NA
Lucy (2D) 28M 43.3 60.09 NA

Plasma (3D) 2.6M 2.26 NA 1.85
Earthquake (3D) 4.2M 3.50 NA 2.77

4 EXPERIMENTAL RESULTS

We evaluated our implementation on an Intel Xeon workstation
with a 2.0 GHz processor and 16 GB main memory, see Table 1.
The results show that RECON, which is generic and is amenable to
an out-of-core implementation, performs on par with or better than
existing algorithms [6, 8] catered to restricted classes of input.

ACKNOWLEDGEMENTS

Harish Doraiswamy was supported by Microsoft Corporation
and Microsoft Research India under the Microsoft Research In-
dia PhD Fellowship Award. This work was supported by
the Department of Science and Technology, India, under Grant
SR/S3/EECE/048/2007.

REFERENCES

[1] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all
dimensions. Comput. Geom. Theory Appl., 24(2):75–94, 2003.

[2] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in Reeb graphs of 2-manifolds. Disc. Comput.
Geom., 32(2):231–244, 2004.

[3] H. Edelsbrunner. Geometry and Topology for Mesh Generation. Cam-
bridge Univ. Press, England, 2001.

[4] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology
matching for fully automatic similarity estimation of 3d shapes. In
Proc. SIGGRAPH, pages 203–212, 2001.

[5] Y. Matsumoto. An Introduction to Morse Theory. Amer. Math. Soc.,
2002. Translated from Japanese by K. Hudson and M. Saito.

[6] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust
on-line computation of Reeb graphs: simplicity and speed. ACM Trans.
Graph., 26(3):58, 2007.

[7] G. Reeb. Sur les points singuliers d’une forme de pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus de
L’Académie ses Séances, Paris, 222:847–849, 1946.

[8] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for
volumetric meshes: Reeb graphs reduced to contour trees. IEEE Trans.
Vis. Comput. Graph., 15(6):1177–1184, 2009.

[9] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann.
Topology-controlled volume rendering. IEEE Trans. Vis. Comput.
Graph., 13(2):330–341, 2007.

